

Communication

Ca- and Ba-Selective Receptors Based on Site-Selective Transmetalation of Multinuclear Polyoxime–Zinc(II) Complexes

Shigehisa Akine, Takanori Taniguchi, Toshiyuki Saiki, and Tatsuya Nabeshima

J. Am. Chem. Soc., 2005, 127 (2), 540-541• DOI: 10.1021/ja046790k • Publication Date (Web): 23 December 2004 Downloaded from http://pubs.acs.org on March 24, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 9 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 12/23/2004

Ca²⁺- and Ba²⁺-Selective Receptors Based on Site-Selective Transmetalation of Multinuclear Polyoxime–Zinc(II) Complexes

Shigehisa Akine, Takanori Taniguchi, Toshiyuki Saiki, and Tatsuya Nabeshima*

Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan

Received May 31, 2004; E-mail: nabesima@chem.tsukuba.ac.jp

Recently, metallohosts that contain one or more transition metal atoms have been utilized to regulate guest-binding by metal coordination1 or redox reactions2 and to construct supramolecular structures.³ Unique properties of the metallohosts are also applied in sophisticated functions such as transduction of molecular information.⁴ We recently reported that, in a cooperative fashion, H₄L¹ and zinc(II) acetate quantitatively form a homotrinuclear zinc-(II) complex, $[L^1Zn_3]^{2+}$, which reacts with europium(III) to afford a heterotrinuclear complex, [L1Zn2Eu]3+, via site-selective transmetalation.⁵ This fine exchange of zinc(II) with a lanthanide(III) ion can be utilized to recognize alkaline earth metals, especially Ca²⁺, since the ionic radius of Ca²⁺ is similar to that of lanthanide-(III) and Ca²⁺ usually accepts 6–10 ligands in the inner sphere.⁶ Furthermore, the coupled exchange of Zn²⁺ and Ca²⁺ is very interesting since the amount of Zn²⁺ released depends on the Ca²⁺ concentration, which is crucial for the neuronal function in the hippocampus.⁷ These facts encouraged us to pursue the Ca²⁺ affinity of $[L^1Zn_3]^{2+}$ and its analogue $[L^2Zn_4]^{2+}$ utilizing a novel transmetalation strategy. In addition, a highly selective detection of Ca²⁺ over Mg²⁺ is very important in vivo since Ca²⁺ concentrations are usually much smaller than those of Mg²⁺ in living cells. Here, we report an extremely selective Ca²⁺ recognition by a trinuclear metallohost, [L¹Zn₃]²⁺, and Ba²⁺ recognition by a larger metallohost, $[L^2Zn_4]^{2+}$ (Chart 1).

Chart 1

When Ca(ClO₄)₂ was added to the metallohost $[L^1Zn_3]^{2+}$ in CDCl₃/CD₃OD (1:1), a new set of signals, which is attributed to complexation with Ca²⁺, appeared in the ¹H NMR spectrum (Figure 1). ¹H NMR titration implies that complexation occurs in a 1:1 stoichiometry. However, ESI mass spectrometry does not indicate a 1:1 complexation between $[L^1Zn_3]^{2+}$ and Ca²⁺; the formation of a trinuclear complex, $[L^1Zn_2Ca]^{2+}$, was indicated since a strong peak at m/z = 805.0 of $[L^1Zn_2Ca(OAc)]^+$ was observed and not $[L^1Zn_3]^{2+}$ peaks. Upon complexation, one Zn²⁺ ion in $[L^1Zn_3]^{2+}$ was liberated and a Ca²⁺ ion was simultaneously bound to the $[L^1Zn_2]$ unit, which is the guest exchange reaction shown in Scheme 1. The equilibrium constant ($K_{Ca} = 32 \pm 3$) was calculated by nonlinear least-squares regression. Thus, 86% of $[L^1Zn_3]^{2+}$ was converted to the calcium complex (defined as *C*, see Table 1) when 1 equiv of Ca²⁺ was added.

The trinuclear metallohost $[L^{1}Zn_{3}]^{2+}$ recognizes Ca²⁺ much easier than Ba²⁺. Adding Ba²⁺ to $[L^{1}Zn_{3}]^{2+}$ resulted in similar ¹H NMR signal changes, but the equilibrium constant was much smaller (K_{Ba} = 0.16 ± 0.04) than that for Ca²⁺. Consequently, the metallohost binds Ca²⁺ 200 times stronger than Ba²⁺. It is noteworthy that Mg²⁺ does not cause the transmetalation. The heterotrinuclear complex $[L^{1}Zn_{2}Mg]^{2+}$ was not observed in the ¹H NMR and ESI mass

Figure 1. ¹H NMR spectra (400 MHz) of $[L^1Zn_3]^{2+}$ in the absence and in the presence of $Ca(ClO_4)_2$ in $CDCl_3/CD_3OD$ (1:1).

 $\mbox{\it Table 1.}$ Equilibrium Constants and Selectivity Coefficients of Trinuclear Complex $[L^1Zn_3]^{2+}$

guest	<i>C</i> /% ^a	$K_{M}{}^{b}$	selectivity ^c
Mg^{2+}	0	_	>5.1 ^d
Ca ²⁺	86	32 ± 3	-
Ba ²⁺	40	0.16 ± 0.04	2.3

^{*a*} Conversion of $[L^1Zn_3]^{2+}$ to $[L^1Zn_2M]^{2+}$ (defined as *C*) when 1 equiv of M(ClO₄)₂ is added. ^{*b*} Equilibrium constant $K_M = ([[L^1Zn_2M]^{2+}][Zn^{2+}])/([[L^1Zn_3]^{2+}][M^{2+}])$, determined by ¹H NMR spectroscopy. ^{*c*} Defined as log(K_{Ca}/K_M). ^{*d*} Estimated by a competition experiment.

spectra of a 1:1 mixture of $[L^{1}Zn_{3}]^{2+}$ and Mg^{2+} . A competition experiment confirmed the high Ca^{2+} selectivity. Even when 1000 equiv of Mg^{2+} was added to an equimolar mixture of $[L^{1}Zn_{3}]^{2+}$ and Ca^{2+} (1 mM), the conversion *C* estimated by ¹H NMR spectroscopy decreased slightly (*C* changed from 86% to 80%) and no new signals due to the Mg^{2+} complex were detected. These data indicate that the selectivity coefficient $log(K_{Ca}/K_{Mg})$ is at least 5.1, which is similar to those of the excellent Ca^{2+} receptors or sensors such as BAPTA⁸ (selectivity coefficients⁹ = 5.20), Quin2⁸ (4.4), and K23E1¹⁰ (5.0).

In contrast, UV-vis and ¹H NMR spectroscopies indicate that $[L^{1}Zn_{3}]^{2+}$ does not have an affinity for alkali metal ions (Na⁺, K⁺, Rb⁺, Cs⁺). Thus, among the biologically important metal cations (Na⁺, K⁺, Mg²⁺, Ca²⁺), the metallohost $[L^{1}Zn_{3}]^{2+}$ exclusively recognizes Ca²⁺. This metallohost, however, strongly binds all of the rare earth(III) ions ($K_{\rm M} > 1000$ for M = Sc³⁺, Y³⁺, La³⁺, Eu³⁺, Lu³⁺), too. These facts suggest that the charge of guest cations is a significant factor which affects the cation-binding ability of

Figure 2. X-ray structure of metallohost-guest complex [L¹Zn₂Ca]²⁺. (a) ORTEP drawing (50% probability). (b) Space-filling representation (counteranions and solvent molecules are omitted for clarity).

Figure 3. Part of ¹H NMR spectra (400 MHz) of $[L^2Zn_4]^{2+}$ in the absence and in the presence of $M(ClO_4)_2$ (1 equiv, M = Mg, Ca, Ba) in CDCl₃/ CD₃OD (1:1).

 $[L^{1}Zn_{3}]^{2+}$ due to the strong electrostatic interaction between the two [Zn(salamo)] moieties and the guest cation M.¹¹ Moreover, the size-fit principle is important for this ion recognition, because among Mg^{2+} , Ca^{2+} , and Ba^{2+} , only Ca^{2+} ion has the appropriate ionic diameter for the recognition site.

The structure of $[L^1Zn_2Ca]^{2+}$ in the crystalline state was determined by X-ray crystallography (Figure 2).¹² The molecule possesses a crystallographic two-fold axis, and the [L¹Zn₂] moiety forms a one-turn helix surrounding the guest Ca²⁺. All six oxygen atoms of the inner recognition site of the [L1Zn2] moiety coordinate nicely to the Ca²⁺. The distances between the calcium atom and the oxygen atoms range from 2.396 to 2.606 Å, which again supports the complementary relationship between Ca²⁺ and the cavity.

A longer derivative, tris(salamo) ligand H_6L^2 , is expected to form a stable one-turn single helix when the three Zn²⁺ ions are introduced into the chelate moieties. ¹H NMR spectroscopy monitored the conversion of ligand H₆L² to the metallohost. Since many peaks were observed in the ¹H NMR spectrum of H₆L² in the presence of 4 equiv of zinc(II) acetate, a mixture of complexes was formed by the complexation (Figure 3). However, in the mass spectrum a strong peak at m/z = 1113.0 was observed, assigned to $[L^2Zn_4(OAc)]^+$, and peaks were not observed in higher m/z regions. The data suggest that the mixture contains not oligomeric complexes but isomers of complex [L²Zn₄]²⁺. This result sharply contrasts the shorter analogue H_4L^1 , which exclusively gave a single complex, $[L^1Zn_3]^{2+}$, via the complexation with a Zn^{2+} ion. This is probably because the central Zn²⁺ was not tightly fixed in the cavity since $[L^2Zn_3]$ has a larger cavity than the size of Zn^{2+} (Scheme 2).

Interestingly, Ba²⁺ (1 equiv) changed the mixture of the isomers of $[L^2Zn_4]^{2+}$ into a single component ($K_{Ba} > 1000$). A sharp, simple ¹H NMR spectrum (Figure 3) strongly suggests the existence of only one species, which was determined to be [L²Zn₃Ba]²⁺ on the basis of the strong peak at m/z = 1185.9, which was assigned to

Scheme 2. Formation of Helical Tetranuclear Complex [L²Zn₃Ba]²⁺ by Exchanging the Central Zn²⁺ with Ba²

the heterotetranuclear complex $[L^2Zn_3Ba(OAc)]^+$ in the ESI mass spectrum. These results indicate the binding of Ba^{2+} in the helical cavity and simultaneous release of a Zn^{2+} ion. Among the three CH=N protons of the Ba²⁺ complex, only the terminal one is observed at higher field (8.14 ppm) in the ¹H NMR spectrum, which also suggests the helical structure.¹³

On the other hand, the $[L^2Zn_4(OAc)_2]$ isomers did not change into a single component when ion M (M = K⁺, Cs⁺, Mg²⁺, Ca²⁺) was added due to the lower stability of the heteronuclear complex $[L^2Zn_3M]^{n+}$. ESI mass spectrometry strongly supports that the transmetalation does not effectively occur, since adding Ca²⁺ or Mg²⁺ resulted in complicated spectra. Thus, the tetranuclear complex $[L^2Zn_4(OAc)_2]$ generated by reacting ligand H_6L^2 and Zn^{2+} was found to act as a Ba²⁺-selective metalloreceptor.

In conclusion, we synthesized a novel ion recognition system based on multinuclear zinc(II) complexes that utilize the selective exchange of metal ions. To utilize it as a novel ion sensor, we are currently investigating the addition of fluorophores at the end of the linear ligands.

Acknowledgment. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Supporting Information Available: Synthetic procedure (PDF); crystallographic data for [L¹Zn₂Ca(ClO₄)₂(MeOH)₂] (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) (a) Nabeshima, T.; Akine, S.; Saiki, T. *Rev. Heteroat. Chem.* 2000, 22, 219–239. (b) Nabeshima, T.; Yoshihira, Y.; Saiki, T.; Akine, S.; Horn, E. J. Am. Chem. Soc. 2003, 125, 28-29.
- (2) (a) Beer, P. D. Chem. Commun. 1996, 689–96. (b) van Veggel, F. C. J. M.; Verboom, W.; Reinhoudt, D. N. Chem. Rev. 1994, 94, 279-99
- (3) Lehn, J.-M. Supramolecular Chemistry, Concepts and Perspectives; VCH: Weinheim, 1995.
- (4) Nabeshima, T.; Hashiguchi, A.; Saiki, T.; Akine, S. Angew. Chem., Int. Ed. 2002, 41, 481–484.
- (5) Akine, S.; Taniguchi, T.; Nabeshima, T. Angew. Chem., Int. Ed. 2002, 41, 4670-4673.
- (6) Source: WebElements [http://www.webelements.com/]. (Shannon, R. D.; Prewitt, C. T. Acta Crystallogr. 1969, B25, 925-946. Shannon, R. D.; Prewitt, C. T. Acta Crystallogr. 1970, B26, 1046–1048. Shannon, R. D. Acta Crystallogr. 1976, A32, 751–767.)
 (7) Assaf, S. Y.; Chung, S.-H. Nature 1984, 308, 734–738.
- (8) Tsien, R. Y. Biochemistry 1980, 19, 2396-2404.
- Defined as $\log(K'_{Ca}/K'_{Mg})$, where $K'_{M} = [receptor M]/[receptor][M]$. Suzuki, K.; Watanabe, K.; Matsumoto, Y.; Kobayashi, M.; Sato, S.; (10)
- Siswanta, D.; Hisamoto, H. Anal. Chem. **1995**, 67, 324–334.
- (11) Carbonaro, L.; Isola, M.; la Pegna, P.; Senatore, L.; Marchetti, F. Inorg. Chem. 1999, 38, 5519-5525. (12) Crystal data for [L¹Zn₂Ca(ClO₄)₂(MeOH)₂]: dark brown crystal, mono-
- clinic, C2/c, a = 10.824(4) Å, b = 15.726(6) Å, c = 22.462(9) Å, β = 92.693(6)°, V = 3819(3) Å³, T = 120 K, Z = 4, R1 = 0.0378 (I > 2σ(I)), wR2 = 0.0899 (all data).¹⁴
- (13) $[L^2Zn_4]^{2+}$ also strongly binds La^{3+} to form $[L^2Zn_3La]^{3+}$. Very recently we have determined the structure of $[L^2Zn_3La(OAc)_3]$ to be helical by X-ray analysis.
- (14) Sheldrick, G. M. SHELXL97, Program for crystal structure determination; University of Göttingen, Germany, 1997.

JA046790K